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Outline of the talk
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Defining the basic modal information logics (MILs)

Definition (language and semantics)
The language is given by

φ ::= ⊥ | p | ¬φ | φ ∨ ψ | 〈min〉φψ,

and the semantics of ‘〈min〉’ is:

w ⊩ 〈min〉φψ iff ∃u, v(u ⊩ φ; v ⊩ ψ;
w ∈ min{u, v})

Example
w w′

u ⊩ p v ⊩ q

w,w′ ⊩ 〈min〉pq, but
w,w′ ⊮ 〈sup〉pq

Definition (frames and logics)
• A poset frame is a pair (W,≤), whereW is a set and ≤ is a partial order
onW (i.e., refl., tran., and anti-symm.).

• Depending on the interpretation of the modality, we get two logics:
– MILMin, our modal information logic of incomparable fusions;
– MIL, the usual modal information logic (over posets).
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Motivation and objectives

Why MILs?

1. Introduced to model a theory of information (by van Benthem (1996))
2. Modestly extend S4

Why minimal upper bounds?

1.’ Formalizes (informational) settings in which states can have multiple
incomparable ‘fusions’

2.’ The resulting logic modestly extends S4
3. But primarily, motivated by technical/mathematical curiosity:

Knudstorp (Forthcoming) axiomatizes MIL, and its completeness proof relies
heavily on this distinction between minimal and least upper bounds.

Objectives:

(R) Figuring out how MILMin and MIL relate;
(A) Axiomatizing MILMin; and
(D) Proving (un)decidability.
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It seems that one should, at least, expect
MIL ̸= MILMin

5



However, the main concern for the rest of the
talk is to show that, in fact, MIL = MILMin

6



Proof of MIL ⊆ MILMin

Our starting point is the following result:

Axiomatization of MIL [Knudstorp (Forthcoming)]
MIL is (sound and complete w.r.t.) the least normal modal logic with axioms:
(Re.) p ∧ q → 〈sup〉pq
(4) PPp→ Pp

(Co.) 〈sup〉pq → 〈sup〉qp
(Dk.) (p ∧ 〈sup〉qr) → 〈sup〉pq

Using this we get:
Proposition
MIL ⊆ MILMin

Proof.
Routine check that MILMin is a normal modal logic validating (Re.), (4), (Co.),
(Dk.).
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Proof of MIL ⊇ MILMin: corollaries and framework

It remains to show that
Theorem
MIL ⊇ MILMin

Note that this would also allow us to deduce:
Corollary (Axiomatization and Decidability)

MILMin is decidable and axiomatized as shown before (because MIL is
[cf. Knudstorp (Forthcoming)]).

Framework for proof of MIL ⊇ MILMin.
• Suppose that φ /∈ MIL.
• ThenMS , w ⊮ φ for some supremum-modelMS .
• Idea: TransformMS into a minimum-modelMM s.t. MM , w ⊮ φ.

Formally, the proof goes by representation using onto p-morphisms.
8
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Proof of MIL ⊇ MILMin: observations and ideas

Observation: Given a partial order ‘≤’: w′ ∈ min{u′, v′} ⇐ w′ = sup{u′, v′}

Recall: We want to mendMS ⇝ MM (in a satisfaction-preserving way).

Idea: Can we make it so that w′ ∈ min{u′, v′} ⇔ w′ = sup{u′, v′}?

Problem becomes: What to do if w′ ∈ min{u′, v′} but w′ 6= sup{u′, v′}?

Observation: There are two ways for an upper-bounded set {u, v} to not
have a supremum:

(i) Incomparable upper bounds; and
(ii) Infinitely descending chain(s) of upper bounds.

Main idea: Transform all instances of (i) inMS into instances of (ii)!

9
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Proof of MIL ⊇ MILMin: naive transformation

From (i) to (ii): naive idea

u

wm

v

⇝

u

wm

v

w0 ⇝ · · ·⇝

u

wm

v

w0m0

w1

⇝ · · ·⇝

u

wm

v

w0m0

w1m1 ...
...

Problem 1: Not enough to ‘duplicate’ w (and m)

Problem 2: What if x = sup{y, z} for, say, y ≤ u and z ≤ v? 10
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Proof of MIL ⊇ MILMin: proper transformation

Problem 1: Not enough to duplicate w

Solution 1: Duplicate ↓w (and place each duplicate right below original)

Problem 2: What if x = sup{y, z} for, say, y ≤ u and z ≤ v?

Solution 2: For x to stay supremum of {y, z}, we must make x see w0 (and
w1, etc.). In general, the least downset containing {u, v} and closed under
binary suprema should see w0 (and w1, etc.).

Using this transformation essentially allows us to prove the following:

Principal lemma
Let (W,≤) be a poset frame and {w, u, v} ⊆W s.t. w ∈ min{u, v} but
w 6= sup{u, v}. Then (W,≤) is the p-morphic image (w.r.t. the supremum
relation) of a poset frame (W ′,≤′) s.t.
1. W ⊆W ′, |W ′| ≤ max{ℵ0, |W |};
2. ≤′ ∩ (W ×W ) = ≤;
3. if x = sup{y, z}, then x = sup′{y, z};
4. w /∈ min′{u, v}.

11
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Proof of MIL ⊇ MILMin: final steps

Proposition (representation)
Every poset frame (W,≤) is the p-morphic image (w.r.t. its supremum
relation) of a poset frame (W ′,≤′) satisfying

∀w′, v′, u′ ∈W ′ (w′ ∈ min{u′, v′} ⇔ w′ = sup{u′, v′}
)
.

Proof idea.
Use the preceding lemma to iteratively resolve all failures of

w′ ∈ min{u′, v′} ⇒ w′ = sup{u′, v′}.

Thus, we have concluded our proof of MIL = MILMin; in this setting, the two
interpretations cannot be told apart.
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This raises the question: when can we tell the
interpretations apart?

13



Telling apart the ⟨min⟩ and ⟨sup⟩ interpretations

From partial orders to preorders:
• Our logics are defined over posets:

MILPos := MIL, MILMinPos := MILMin

• What happens if we generalize to preorders MILPre,MILMinPre ?
• Answer: Nothing. We get the exact same logics:

MILPre = MILPos = MILMinPre = MILMinPos

Adding vocabulary:
• What happens if we add the implication ‘\’ with semantics
v ⊩ φ\ψ iff ∀u,w([u ⊩ φ,w = sup{u, v}/w ∈ min{u, v}] ⇒ w ⊩ ψ)

• Answer: Again nothing:
MIL\-Pre = MIL\-Pos = MILMin\-Pre = MILMin\-Pos

Going finite:
• What if we only consider finite posets?
• Answer: They come apart! B/c MIL 63 (Pp ∧ Pq) → P 〈sup〉pq ∈ MILMin

14



Telling apart the ⟨min⟩ and ⟨sup⟩ interpretations

From partial orders to preorders:
• Our logics are defined over posets:

MILPos := MIL, MILMinPos := MILMin

• What happens if we generalize to preorders MILPre,MILMinPre ?

• Answer: Nothing. We get the exact same logics:
MILPre = MILPos = MILMinPre = MILMinPos

Adding vocabulary:
• What happens if we add the implication ‘\’ with semantics
v ⊩ φ\ψ iff ∀u,w([u ⊩ φ,w = sup{u, v}/w ∈ min{u, v}] ⇒ w ⊩ ψ)

• Answer: Again nothing:
MIL\-Pre = MIL\-Pos = MILMin\-Pre = MILMin\-Pos

Going finite:
• What if we only consider finite posets?
• Answer: They come apart! B/c MIL 63 (Pp ∧ Pq) → P 〈sup〉pq ∈ MILMin

14



Telling apart the ⟨min⟩ and ⟨sup⟩ interpretations

From partial orders to preorders:
• Our logics are defined over posets:

MILPos := MIL, MILMinPos := MILMin

• What happens if we generalize to preorders MILPre,MILMinPre ?
• Answer: Nothing.

We get the exact same logics:
MILPre = MILPos = MILMinPre = MILMinPos

Adding vocabulary:
• What happens if we add the implication ‘\’ with semantics
v ⊩ φ\ψ iff ∀u,w([u ⊩ φ,w = sup{u, v}/w ∈ min{u, v}] ⇒ w ⊩ ψ)

• Answer: Again nothing:
MIL\-Pre = MIL\-Pos = MILMin\-Pre = MILMin\-Pos

Going finite:
• What if we only consider finite posets?
• Answer: They come apart! B/c MIL 63 (Pp ∧ Pq) → P 〈sup〉pq ∈ MILMin

14



Telling apart the ⟨min⟩ and ⟨sup⟩ interpretations

From partial orders to preorders:
• Our logics are defined over posets:

MILPos := MIL, MILMinPos := MILMin

• What happens if we generalize to preorders MILPre,MILMinPre ?
• Answer: Nothing. We get the exact same logics:

MILPre = MILPos = MILMinPre = MILMinPos

Adding vocabulary:
• What happens if we add the implication ‘\’ with semantics
v ⊩ φ\ψ iff ∀u,w([u ⊩ φ,w = sup{u, v}/w ∈ min{u, v}] ⇒ w ⊩ ψ)

• Answer: Again nothing:
MIL\-Pre = MIL\-Pos = MILMin\-Pre = MILMin\-Pos

Going finite:
• What if we only consider finite posets?
• Answer: They come apart! B/c MIL 63 (Pp ∧ Pq) → P 〈sup〉pq ∈ MILMin

14



Telling apart the ⟨min⟩ and ⟨sup⟩ interpretations

From partial orders to preorders:
• Our logics are defined over posets:

MILPos := MIL, MILMinPos := MILMin

• What happens if we generalize to preorders MILPre,MILMinPre ?
• Answer: Nothing. We get the exact same logics:

MILPre = MILPos = MILMinPre = MILMinPos

Adding vocabulary:

• What happens if we add the implication ‘\’ with semantics
v ⊩ φ\ψ iff ∀u,w([u ⊩ φ,w = sup{u, v}/w ∈ min{u, v}] ⇒ w ⊩ ψ)

• Answer: Again nothing:
MIL\-Pre = MIL\-Pos = MILMin\-Pre = MILMin\-Pos

Going finite:
• What if we only consider finite posets?
• Answer: They come apart! B/c MIL 63 (Pp ∧ Pq) → P 〈sup〉pq ∈ MILMin

14



Telling apart the ⟨min⟩ and ⟨sup⟩ interpretations

From partial orders to preorders:
• Our logics are defined over posets:

MILPos := MIL, MILMinPos := MILMin

• What happens if we generalize to preorders MILPre,MILMinPre ?
• Answer: Nothing. We get the exact same logics:

MILPre = MILPos = MILMinPre = MILMinPos

Adding vocabulary:
• What happens if we add the implication ‘\’ with semantics
v ⊩ φ\ψ iff ∀u,w([u ⊩ φ,w = sup{u, v}/w ∈ min{u, v}] ⇒ w ⊩ ψ)

• Answer: Again nothing:
MIL\-Pre = MIL\-Pos = MILMin\-Pre = MILMin\-Pos

Going finite:
• What if we only consider finite posets?
• Answer: They come apart! B/c MIL 63 (Pp ∧ Pq) → P 〈sup〉pq ∈ MILMin

14



Telling apart the ⟨min⟩ and ⟨sup⟩ interpretations

From partial orders to preorders:
• Our logics are defined over posets:

MILPos := MIL, MILMinPos := MILMin

• What happens if we generalize to preorders MILPre,MILMinPre ?
• Answer: Nothing. We get the exact same logics:

MILPre = MILPos = MILMinPre = MILMinPos

Adding vocabulary:
• What happens if we add the implication ‘\’ with semantics
v ⊩ φ\ψ iff ∀u,w([u ⊩ φ,w = sup{u, v}/w ∈ min{u, v}] ⇒ w ⊩ ψ)

• Answer: Again nothing:
MIL\-Pre = MIL\-Pos = MILMin\-Pre = MILMin\-Pos

Going finite:
• What if we only consider finite posets?
• Answer: They come apart! B/c MIL 63 (Pp ∧ Pq) → P 〈sup〉pq ∈ MILMin

14



Telling apart the ⟨min⟩ and ⟨sup⟩ interpretations

From partial orders to preorders:
• Our logics are defined over posets:

MILPos := MIL, MILMinPos := MILMin

• What happens if we generalize to preorders MILPre,MILMinPre ?
• Answer: Nothing. We get the exact same logics:

MILPre = MILPos = MILMinPre = MILMinPos

Adding vocabulary:
• What happens if we add the implication ‘\’ with semantics
v ⊩ φ\ψ iff ∀u,w([u ⊩ φ,w = sup{u, v}/w ∈ min{u, v}] ⇒ w ⊩ ψ)

• Answer: Again nothing:
MIL\-Pre = MIL\-Pos = MILMin\-Pre = MILMin\-Pos

Going finite:
• What if we only consider finite posets?

• Answer: They come apart! B/c MIL 63 (Pp ∧ Pq) → P 〈sup〉pq ∈ MILMin

14



Telling apart the ⟨min⟩ and ⟨sup⟩ interpretations

From partial orders to preorders:
• Our logics are defined over posets:

MILPos := MIL, MILMinPos := MILMin

• What happens if we generalize to preorders MILPre,MILMinPre ?
• Answer: Nothing. We get the exact same logics:

MILPre = MILPos = MILMinPre = MILMinPos

Adding vocabulary:
• What happens if we add the implication ‘\’ with semantics
v ⊩ φ\ψ iff ∀u,w([u ⊩ φ,w = sup{u, v}/w ∈ min{u, v}] ⇒ w ⊩ ψ)

• Answer: Again nothing:
MIL\-Pre = MIL\-Pos = MILMin\-Pre = MILMin\-Pos

Going finite:
• What if we only consider finite posets?
• Answer: They come apart! B/c MIL 63 (Pp ∧ Pq) → P 〈sup〉pq ∈ MILMin

14



Conclusion

Summary and main themes:

• Proved that ⟨sup⟩ and ⟨min⟩ interpretations result in the same
logic MIL = MILMin.

• Showed that MILMin is sound w.r.t. to axiomatization of MIL.
• Collapsed the minimum-relation into the supremum-relation s.t.

w′ ∈ min{u′, v′} ⇔ w′ = sup{u′, v′}

by transforming instances of (i) into instances of (ii).
• Obtained axiomatization and decidability for free.
• Considered other settings uncapable of distinguishing the
interpretations: preorders and augmenting with ‘\’; but noted
that the induced logics do come apart on finite structures.
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Thank you!
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The principal lemma

Principal lemma
Let (W,≤) be a poset frame and {w, u, v} ⊆W s.t. w ∈ min{u, v} but
w 6= sup{u, v}. Then (W,≤) is the p-morphic image (w.r.t. the supremum
relation) of a poset frame (W ′,≤′) s.t.
1. W ⊆W ′, |W ′| ≤ max{ℵ0, |W |};
2. ≤′ ∩ (W ×W ) = ≤;
3. if x = sup{y, z}, then x = sup′{y, z};
4. w /∈ min′{u, v}.

Proof.
LetW ′ :=W t ↓w = {(x, 0), (y, 1) | x ∈W,y ∈ ↓w}, and

f :W ′ →W, (x, i) 7→ x

For all (x, i), (y, j) ∈W ′, we let (y, j) ≤′ (x, i) iff
• i = 0 and y ≤ x, or
• j = i = 1 and y ≤ x, or
• j = 0, i = 1, y ∈ A and x = w.

To show: (1) (W ′,≤′) is a poset frame; (2) 1.-4. are satisfied; and (3) f is an onto
p-morphism. 18



Completeness of MIL: the basic idea

Example
x

{⟨sup⟩χ0χ
′
0, ⟨sup⟩χ1χ

′
1} ⊆ l(x)

y

χ0 ∈ l(y)

z

χ′
0 ∈ l(z)

⟨sup⟩-repair⇝⟨sup⟩-repair⇝

¬⟨sup⟩-repair⇝

x

y

χ0 ∈ l(y)

z

χ′
0 ∈ l(z)

z′

χ′
1 ∈ l(z′)

y′

χ1 ∈ l(y′)

x

¬⟨sup⟩ψψ′ ∈ l(x)

y z

ψ ∈ l(z)

z′

ψ′ ∈ l(z′)

y′

d
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