Modal Information Logic of Incomparable Fusions

Søren Brinck Knudstorp Extract from MSc thesis, supervised by Johan van Benthem and Nick Bezhanishvili September 19, 2023

Universiteit van Amsterdam

- Introduction and motivation
- Proof (outline) of main theorem
- Conclusion

- A poset frame is a pair (W, \leq) , where W is a set and \leq is a partial order on W (i.e., refl., tran., and anti-symm.).
- $\cdot\,$ Depending on the interpretation of the modality, we get two logics:
 - MIL^{Min}, our modal information logic of incomparable fusions;
 - MIL, the usual modal information logic (over posets).

- A poset frame is a pair (W, \leq) , where W is a set and \leq is a partial order on W (i.e., refl., tran., and anti-symm.).
- $\cdot\,$ Depending on the interpretation of the modality, we get two logics:
 - MIL^{Min}, our modal information logic of incomparable fusions;
 - MIL, the usual modal information logic (over posets).

Definition (language and semantics)

The language is given by

```
\varphi ::= \bot \mid p \mid \neg \varphi \mid \varphi \lor \psi \mid \langle \min \rangle \varphi \psi,
```

and the semantics of ' $\langle \min \rangle$ ' is:

 $w \Vdash \langle \min \rangle \varphi \psi \quad \text{iff} \quad \exists u, v(u \Vdash \varphi; \ v \Vdash \psi; \\ w \in \min\{u, v\})$

- A poset frame is a pair (W, \leq) , where W is a set and \leq is a partial order on W (i.e., refl., tran., and anti-symm.).
- Depending on the interpretation of the modality, we get two logics:
 - MIL^{Min}, our modal information logic of incomparable fusions;
 - MIL, the usual modal information logic (over posets).

- A poset frame is a pair (W, \leq) , where W is a set and \leq is a partial order on W (i.e., refl., tran., and anti-symm.).
- Depending on the interpretation of the modality, we get two logics:
 - MIL^{Min}, our modal information logic of incomparable fusions;
 - MIL, the usual modal information logic (over posets).

- A poset frame is a pair (W, \leq) , where W is a set and \leq is a partial order on W (i.e., refl., tran., and anti-symm.).
- Depending on the interpretation of the modality, we get two logics:
 - MIL^{Min}, our modal information logic of incomparable fusions;
 - MIL, the usual modal information logic (over posets).

Why MILs?

- 1. Introduced to model a theory of information (by van Benthem (1996))
- 2. Modestly extend **S4**

Why minimal upper bounds?

- 1.' Formalizes (informational) settings in which states can have multiple incomparable 'fusions'
- 2.' The resulting logic modestly extends ${f S4}$
- 3. But primarily, motivated by technical/mathematical curiosity:

Knudstorp (Forthcoming) axiomatizes MIL, and its completeness proof relies heavily on this distinction between **minimal** and **least** upper bounds.

- (R) Figuring out how MIL^{Min} and MIL relate;
- (A) Axiomatizing *MIL^{Min}*; and
- (D) Proving (un)decidability.

Why MILs?

- 1. Introduced to model a theory of information (by van Benthem (1996))
- 2. Modestly extend S4

Why minimal upper bounds?

- 1.' Formalizes (informational) settings in which states can have multiple incomparable 'fusions'
- 2.' The resulting logic modestly extends ${f S4}$
- 3. But primarily, motivated by technical/mathematical curiosity:

Knudstorp (Forthcoming) axiomatizes MIL, and its completeness proof relies heavily on this distinction between **minimal** and **least** upper bounds.

- (R) Figuring out how MIL^{Min} and MIL relate;
- (A) Axiomatizing *MIL^{Min}*; and
- (D) Proving (un)decidability.

Why MILs?

- 1. Introduced to model a theory of information (by van Benthem (1996))
- 2. Modestly extend ${f S4}$

Why minimal upper bounds?

- 1.' Formalizes (informational) settings in which states can have multiple incomparable 'fusions'
- 2.' The resulting logic modestly extends ${f S4}$
- 3. But primarily, motivated by technical/mathematical curiosity:

Knudstorp (Forthcoming) axiomatizes MIL, and its completeness proof relies heavily on this distinction between **minimal** and **least** upper bounds.

- (R) Figuring out how MIL^{Min} and MIL relate;
- (A) Axiomatizing *MIL^{Min}*; and
- (D) Proving (un)decidability.

Why MILs?

- 1. Introduced to model a theory of information (by van Benthem (1996))
- 2. Modestly extend ${f S4}$

Why minimal upper bounds?

- 1.' Formalizes (informational) settings in which states can have multiple incomparable 'fusions'
- 2.' The resulting logic modestly extends ${f S4}$
- 3. But primarily, motivated by technical/mathematical curiosity:

Knudstorp (Forthcoming) axiomatizes MIL, and its completeness proof relies heavily on this distinction between **minimal** and **least** upper bounds.

- (R) Figuring out how MIL^{Min} and MIL relate;
- (A) Axiomatizing *MIL^{Min}*; and
- (D) Proving (un)decidability.

Why MILs?

- 1. Introduced to model a theory of information (by van Benthem (1996))
- 2. Modestly extend ${f S4}$

Why minimal upper bounds?

- 1.' Formalizes (informational) settings in which states can have multiple incomparable 'fusions'
- 2.' The resulting logic modestly extends ${f S4}$
- 3. But primarily, motivated by technical/mathematical curiosity:

Knudstorp (Forthcoming) axiomatizes MIL, and its completeness proof relies heavily on this distinction between **minimal** and **least** upper bounds.

- (R) Figuring out how MIL^{Min} and MIL relate;
- (A) Axiomatizing *MIL^{Min}*; and
- (D) Proving (un)decidability.

Why MILs?

- 1. Introduced to model a theory of information (by van Benthem (1996))
- 2. Modestly extend ${f S4}$

Why minimal upper bounds?

- 1.' Formalizes (informational) settings in which states can have multiple incomparable 'fusions'
- 2.' The resulting logic modestly extends ${f S4}$
- 3. But primarily, motivated by technical/mathematical curiosity:

Knudstorp (Forthcoming) axiomatizes MIL, and its completeness proof relies heavily on this distinction between **minimal** and **least** upper bounds.

- (R) Figuring out how MIL^{Min} and MIL relate;
- (A) Axiomatizing *MIL^{Min}*; and
- (D) Proving (un)decidability.

Why MILs?

- 1. Introduced to model a theory of information (by van Benthem (1996))
- 2. Modestly extend ${f S4}$

Why minimal upper bounds?

- 1.' Formalizes (informational) settings in which states can have multiple incomparable 'fusions'
- 2.' The resulting logic modestly extends ${f S4}$
- 3. But primarily, motivated by technical/mathematical curiosity:

Knudstorp (Forthcoming) axiomatizes MIL, and its completeness proof relies heavily on this distinction between **minimal** and **least** upper bounds.

- (R) Figuring out how MIL^{Min} and MIL relate;
- (A) Axiomatizing *MIL^{Min};* and
- (D) Proving (un)decidability.

Why MILs?

- 1. Introduced to model a theory of information (by van Benthem (1996))
- 2. Modestly extend ${f S4}$

Why minimal upper bounds?

- 1.' Formalizes (informational) settings in which states can have multiple incomparable 'fusions'
- 2.' The resulting logic modestly extends ${f S4}$
- 3. But primarily, motivated by technical/mathematical curiosity:

Knudstorp (Forthcoming) axiomatizes MIL, and its completeness proof relies heavily on this distinction between **minimal** and **least** upper bounds.

- (R) Figuring out how *MIL^{Min}* and *MIL* relate;
- (A) Axiomatizing *MIL^{Min}*; and
- (D) Proving (un)decidability.

Why MILs?

- 1. Introduced to model a theory of information (by van Benthem (1996))
- 2. Modestly extend ${f S4}$

Why minimal upper bounds?

- 1.' Formalizes (informational) settings in which states can have multiple incomparable 'fusions'
- 2.' The resulting logic modestly extends ${f S4}$
- 3. But primarily, motivated by technical/mathematical curiosity:

Knudstorp (Forthcoming) axiomatizes MIL, and its completeness proof relies heavily on this distinction between **minimal** and **least** upper bounds.

- (R) Figuring out how *MIL^{Min}* and *MIL* relate;
- (A) Axiomatizing *MIL^{Min}*; and
- (D) Proving (un)decidability.

It seems that one should, at least, expect $MIL \neq MIL^{Min}$

However, the main concern for the rest of the talk is to show that, in fact, $MIL = MIL^{Min}$

Our starting point is the following result:

Axiomatization of MIL [Knudstorp (Forthcoming)]

MIL is (sound and complete w.r.t.) the least normal modal logic with axioms:

- (Re.) $p \land q \rightarrow \langle \sup \rangle pq$
 - (4) $PPp \rightarrow Pp$
- (Co.) $\langle \sup \rangle pq \rightarrow \langle \sup \rangle qp$
- (Dk.) $(p \land \langle \sup \rangle qr) \rightarrow \langle \sup \rangle pq$

Using this we get:

Proposition

 $MIL \subseteq MIL^{Min}$

Proof.

Our starting point is the following result:

Axiomatization of MIL [Knudstorp (Forthcoming)]

MIL is (sound and complete w.r.t.) the least normal modal logic with axioms:

(Re.) $p \land q \rightarrow \langle \sup \rangle pq$ (4) $PPp \rightarrow Pp$ (Co.) $\langle \sup \rangle pq \rightarrow \langle \sup \rangle qp$ (Dk.) $(p \land \langle \sup \rangle qr) \rightarrow \langle \sup \rangle pq$

Using this we get:

Proposition

 $MIL \subseteq MIL^{Min}$

Proof.

Our starting point is the following result:

Axiomatization of MIL [Knudstorp (Forthcoming)]

MIL is (sound and complete w.r.t.) the least normal modal logic with axioms:

(Re.) $p \land q \rightarrow \langle \sup \rangle pq$ (4) $PPp \rightarrow Pp$ (Co.) $\langle \sup \rangle pq \rightarrow \langle \sup \rangle qp$ (Dk.) $(p \land \langle \sup \rangle qr) \rightarrow \langle \sup \rangle pq$

Using this we get:

Proposition

 $\mathit{MIL} \subseteq \mathit{MIL}^{\mathit{Min}}$

Proof.

Our starting point is the following result:

Axiomatization of MIL [Knudstorp (Forthcoming)]

MIL is (sound and complete w.r.t.) the least normal modal logic with axioms:

(Re.) $p \land q \rightarrow \langle \sup \rangle pq$ (4) $PPp \rightarrow Pp$ (Co.) $\langle \sup \rangle pq \rightarrow \langle \sup \rangle qp$ (Dk.) $(p \land \langle \sup \rangle qr) \rightarrow \langle \sup \rangle pq$

Using this we get:

Proposition

 $MIL \subseteq MIL^{Min}$

Proof.

It remains to show that

Theorem

 $MIL \supseteq MIL^{Min}$

Note that this would also allow us to deduce:

Corollary (Axiomatization and Decidability)

MIL^{Min} is decidable and axiomatized as shown before (because *MIL* is [cf. Knudstorp (Forthcoming)]).

Framework for proof of $MIL \supseteq MIL^{Min}$.

- Suppose that $\varphi \notin MIL$.
- Then $\mathbb{M}^S, w \nvDash \varphi$ for some supremum-model \mathbb{M}^S .
- Idea: Transform \mathbb{M}^S into a minimum-model \mathbb{M}^M s.t. $\mathbb{M}^M, w \nvDash \varphi$.

It remains to show that

Theorem

 $MIL \supseteq MIL^{Min}$

Note that this would also allow us to deduce:

Corollary (Axiomatization and Decidability)

MIL^{Min} is decidable and axiomatized as shown before (because *MIL* is [cf. Knudstorp (Forthcoming)]).

Framework for proof of $MIL \supseteq MIL^{Min}$.

- Suppose that $\varphi \notin MIL$.
- Then $\mathbb{M}^S, w \nvDash \varphi$ for some supremum-model \mathbb{M}^S .
- Idea: Transform \mathbb{M}^S into a minimum-model \mathbb{M}^M s.t. $\mathbb{M}^M, w \nvDash \varphi$.

It remains to show that

Theorem

 $\textit{MIL}\supseteq\textit{MIL}^{\textit{Min}}$

Note that this would also allow us to deduce:

Corollary (Axiomatization and Decidability)

MIL^{Min} is decidable and axiomatized as shown before (because *MIL* is [cf. Knudstorp (Forthcoming)]).

Framework for proof of $MIL \supseteq MIL^{Min}$.

- Suppose that $\varphi \notin MIL$.
- Then $\mathbb{M}^S, w \nvDash \varphi$ for some supremum-model \mathbb{M}^S .
- Idea: Transform \mathbb{M}^S into a minimum-model \mathbb{M}^M s.t. $\mathbb{M}^M, w \nvDash \varphi$.

It remains to show that

Theorem

 $MIL \supseteq MIL^{Min}$

Note that this would also allow us to deduce:

Corollary (Axiomatization and Decidability)

MIL^{Min} is decidable and axiomatized as shown before (because *MIL* is [cf. Knudstorp (Forthcoming)]).

Framework for proof of $MIL \supseteq MIL^{Min}$.

- Suppose that $\varphi \notin MIL$.
- Then $\mathbb{M}^S, w \nvDash \varphi$ for some supremum-model \mathbb{M}^S .
- Idea: Transform \mathbb{M}^S into a minimum-model \mathbb{M}^M s.t. $\mathbb{M}^M, w \nvDash arphi$.

It remains to show that

Theorem

 $MIL \supseteq MIL^{Min}$

Note that this would also allow us to deduce:

Corollary (Axiomatization and Decidability)

MIL^{Min} is decidable and axiomatized as shown before (because *MIL* is [cf. Knudstorp (Forthcoming)]).

Framework for proof of $MIL \supseteq MIL^{Min}$.

- Suppose that $\varphi \notin MIL$.
- Then $\mathbb{M}^S, w \nvDash \varphi$ for some supremum-model \mathbb{M}^S .
- Idea: Transform \mathbb{M}^S into a minimum-model \mathbb{M}^M s.t. $\mathbb{M}^M, w \nvDash \varphi$.

It remains to show that

Theorem

 $MIL \supseteq MIL^{Min}$

Note that this would also allow us to deduce:

Corollary (Axiomatization and Decidability)

MIL^{Min} is decidable and axiomatized as shown before (because *MIL* is [cf. Knudstorp (Forthcoming)]).

Framework for proof of $MIL \supseteq MIL^{Min}$.

- Suppose that $\varphi \notin MIL$.
- Then $\mathbb{M}^S, w \nvDash \varphi$ for some supremum-model \mathbb{M}^S .
- Idea: Transform \mathbb{M}^S into a minimum-model \mathbb{M}^M s.t. $\mathbb{M}^M, w \nvDash \varphi$.

Observation: Given a partial order ' \leq ': $w' \in \min\{u', v'\} \Leftarrow w' = \sup\{u', v'\}$

Recall: We want to mend $\mathbb{M}^S \rightsquigarrow \mathbb{M}^M$ (in a satisfaction-preserving way).

Idea: Can we make it so that $w' \in \min\{u', v'\} \Leftrightarrow w' = \sup\{u', v'\}$?Problem becomes: What to do if $w' \in \min\{u', v'\}$ but $w' \neq \sup\{u', v'\}$?Observation: There are two ways for an upper-bounded set $\{u, v\}$ to not have a supremum:

- (i) Incomparable upper bounds; and
- (ii) Infinitely descending chain(s) of upper bounds.

- (i) Incomparable upper bounds; and
- (ii) Infinitely descending chain(s) of upper bounds.

- (i) Incomparable upper bounds; and
- (ii) Infinitely descending chain(s) of upper bounds.

Observation: Given a partial order ' \leq ': $w' \in \min\{u', v'\} \Leftrightarrow w' = \sup\{u', v'\}$ **Recall:** We want to mend $\mathbb{M}^S \rightsquigarrow \mathbb{M}^M$ (in a satisfaction-preserving way). **Idea:** Can we make it so that $w' \in \min\{u', v'\} \Leftrightarrow w' = \sup\{u', v'\}$? **Problem becomes:** What to do if $w' \in \min\{u', v'\}$ but $w' \neq \sup\{u', v'\}$?

Observation: There are two ways for an upper-bounded set $\{u, v\}$ to not have a supremum:

- (i) Incomparable upper bounds; and
- (ii) Infinitely descending chain(s) of upper bounds.

(i) Incomparable upper bounds; and

(ii) Infinitely descending chain(s) of upper bounds.

(i) Incomparable upper bounds; and

(ii) Infinitely descending chain(s) of upper bounds.

- (i) Incomparable upper bounds; and
- (ii) Infinitely descending chain(s) of upper bounds.

- (i) Incomparable upper bounds; and
- (ii) Infinitely descending chain(s) of upper bounds.

Problem 1: Not enough to 'duplicate' w (and m)

Problem 2: What if $x = \sup\{y, z\}$ for, say, $y \le u$ and $z \le v$?

Problem 1: Not enough to 'duplicate' w (and m)

Problem 2: What if $x = \sup\{y, z\}$ for, say, $y \le u$ and $z \le v$?

Problem 1: Not enough to 'duplicate' w (and m)

Problem 2: What if $x = \sup\{y, z\}$ for, say, $y \le u$ and $z \le v$?

Problem 1: Not enough to duplicate \boldsymbol{w}

Solution 1: Duplicate $\downarrow w$ (and place each duplicate right below original)

Problem 2: What if $x = \sup\{y, z\}$ for, say, $y \le u$ and $z \le v$?

Solution 2: For x to stay supremum of $\{y, z\}$, we must make x see w_0 (and w_1 , etc.). In general, the least downset containing $\{u, v\}$ and closed under binary suprema should see w_0 (and w_1 , etc.).

Using this transformation essentially allows us to prove the following:

Principal lemma

Let (W, \leq) be a poset frame and $\{w, u, v\} \subseteq W$ s.t. $w \in \min\{u, v\}$ but $w \neq \sup\{u, v\}$. Then (W, \leq) is the p-morphic image (w.r.t. the supremum relation) of a poset frame (W', \leq') s.t.

- 1. $W \subseteq W', |W'| \le \max\{\aleph_0, |W|\};$
- $2. \leq' \cap (W \times W) = \leq;$

3. if
$$x = \sup\{y, z\}$$
, then $x = \sup'\{y, z\}$;

Problem 1: Not enough to duplicate w

Solution 1: Duplicate $\downarrow w$ (and place each duplicate right below original)

Problem 2: What if $x = \sup\{y, z\}$ for, say, $y \le u$ and $z \le v$?

Solution 2: For x to stay supremum of $\{y, z\}$, we must make x see w_0 (and w_1 , etc.). In general, the least downset containing $\{u, v\}$ and closed under binary suprema should see w_0 (and w_1 , etc.).

Using this transformation essentially allows us to prove the following:

Principal lemma

Let (W, \leq) be a poset frame and $\{w, u, v\} \subseteq W$ s.t. $w \in \min\{u, v\}$ but $w \neq \sup\{u, v\}$. Then (W, \leq) is the p-morphic image (w.r.t. the supremum relation) of a poset frame (W', \leq') s.t.

- 1. $W \subseteq W', |W'| \le \max\{\aleph_0, |W|\};$
- $2. \leq' \cap (W \times W) = \leq;$

3. if
$$x = \sup\{y, z\}$$
, then $x = \sup'\{y, z\}$;

Problem 1: Not enough to duplicate w

Solution 1: Duplicate $\downarrow w$ (and place each duplicate right below original)

Problem 2: What if $x = \sup\{y, z\}$ for, say, $y \le u$ and $z \le v$?

Solution 2: For x to stay supremum of $\{y, z\}$, we must make x see w_0 (and w_1 , etc.). In general, the least downset containing $\{u, v\}$ and closed under binary suprema should see w_0 (and w_1 , etc.).

Using this transformation essentially allows us to prove the following:

Principal lemma

Let (W, \leq) be a poset frame and $\{w, u, v\} \subseteq W$ s.t. $w \in \min\{u, v\}$ but $w \neq \sup\{u, v\}$. Then (W, \leq) is the p-morphic image (w.r.t. the supremum relation) of a poset frame (W', \leq') s.t.

- 1. $W \subseteq W', |W'| \le \max\{\aleph_0, |W|\};$
- $2. \leq' \cap (W \times W) = \leq;$

3. if
$$x = \sup\{y, z\}$$
, then $x = \sup'\{y, z\}$;

Problem 1: Not enough to duplicate w

Solution 1: Duplicate $\downarrow w$ (and place each duplicate right below original)

Problem 2: What if $x = \sup\{y, z\}$ for, say, $y \le u$ and $z \le v$?

Solution 2: For x to stay supremum of $\{y, z\}$, we must make x see w_0 (and w_1 , etc.). In general, the least downset containing $\{u, v\}$ and closed under binary suprema should see w_0 (and w_1 , etc.).

Using this transformation essentially allows us to prove the following:

Principal lemma

Let (W, \leq) be a poset frame and $\{w, u, v\} \subseteq W$ s.t. $w \in \min\{u, v\}$ but $w \neq \sup\{u, v\}$. Then (W, \leq) is the p-morphic image (w.r.t. the supremum relation) of a poset frame (W', \leq') s.t.

- 1. $W \subseteq W', |W'| \le \max\{\aleph_0, |W|\};$
- $2. \leq' \cap (W \times W) = \leq;$

3. if
$$x = \sup\{y, z\}$$
, then $x = \sup'\{y, z\}$;

Problem 1: Not enough to duplicate w

Solution 1: Duplicate $\downarrow w$ (and place each duplicate right below original)

Problem 2: What if $x = \sup\{y, z\}$ for, say, $y \le u$ and $z \le v$?

Solution 2: For x to stay supremum of $\{y, z\}$, we must make x see w_0 (and w_1 , etc.). In general, the least downset containing $\{u, v\}$ and closed under binary suprema should see w_0 (and w_1 , etc.).

Using this transformation essentially allows us to prove the following:

Principal lemma

Let (W, \leq) be a poset frame and $\{w, u, v\} \subseteq W$ s.t. $w \in \min\{u, v\}$ but $w \neq \sup\{u, v\}$. Then (W, \leq) is the p-morphic image (w.r.t. the supremum relation) of a poset frame (W', \leq') s.t.

- 1. $W \subseteq W', |W'| \le \max\{\aleph_0, |W|\};$
- $2. \leq' \cap (W \times W) = \leq;$

3. if
$$x = \sup\{y, z\}$$
, then $x = \sup'\{y, z\}$;

Problem 1: Not enough to duplicate w

Solution 1: Duplicate $\downarrow w$ (and place each duplicate right below original)

Problem 2: What if $x = \sup\{y, z\}$ for, say, $y \le u$ and $z \le v$?

Solution 2: For x to stay supremum of $\{y, z\}$, we must make x see w_0 (and w_1 , etc.). In general, the least downset containing $\{u, v\}$ and closed under binary suprema should see w_0 (and w_1 , etc.).

Using this transformation essentially allows us to prove the following:

Principal lemma

Let (W, \leq) be a poset frame and $\{w, u, v\} \subseteq W$ s.t. $w \in \min\{u, v\}$ but $w \neq \sup\{u, v\}$. Then (W, \leq) is the p-morphic image (w.r.t. the supremum relation) of a poset frame (W', \leq') s.t.

- 1. $W \subseteq W', |W'| \le \max\{\aleph_0, |W|\};$
- $2. \leq' \cap (W \times W) = \leq;$

3. if
$$x = \sup\{y, z\}$$
, then $x = \sup'\{y, z\}$;

Problem 1: Not enough to duplicate w

Solution 1: Duplicate $\downarrow w$ (and place each duplicate right below original)

Problem 2: What if $x = \sup\{y, z\}$ for, say, $y \le u$ and $z \le v$?

Solution 2: For x to stay supremum of $\{y, z\}$, we must make x see w_0 (and w_1 , etc.). In general, the least downset containing $\{u, v\}$ and closed under binary suprema should see w_0 (and w_1 , etc.).

Using this transformation essentially allows us to prove the following:

Principal lemma

Let (W, \leq) be a poset frame and $\{w, u, v\} \subseteq W$ s.t. $w \in \min\{u, v\}$ but $w \neq \sup\{u, v\}$. Then (W, \leq) is the p-morphic image (w.r.t. the supremum relation) of a poset frame (W', \leq') s.t.

- 1. $W \subseteq W', |W'| \le \max\{\aleph_0, |W|\};$
- $2. \leq' \cap (W \times W) = \leq;$

3. if
$$x = \sup\{y, z\}$$
, then $x = \sup'\{y, z\}$;

Proposition (representation)

Every poset frame (W, \leq) is the p-morphic image (w.r.t. its supremum relation) of a poset frame (W', \leq') satisfying

 $\forall w', v', u' \in W' \left(w' \in \min\{u', v'\} \Leftrightarrow w' = \sup\{u', v'\} \right).$

Proof idea.

Use the preceding lemma to iteratively resolve all failures of

$$w' \in \min\{u', v'\} \Rightarrow w' = \sup\{u', v'\}. \quad \Box$$

Thus, we have concluded our proof of MIL = MIL^{Min}; in this setting, the two interpretations cannot be told apart.

Proposition (representation)

Every poset frame (W, \leq) is the p-morphic image (w.r.t. its supremum relation) of a poset frame (W', \leq') satisfying

 $\forall w', v', u' \in W' \left(w' \in \min\{u', v'\} \Leftrightarrow w' = \sup\{u', v'\} \right).$

Proof idea.

Use the preceding lemma to iteratively resolve all failures of

$$w' \in \min\{u', v'\} \Rightarrow w' = \sup\{u', v'\}. \quad \Box$$

Thus, we have concluded our proof of MIL = MIL^{Min}; in this setting, the two interpretations cannot be told apart.

Proposition (representation)

Every poset frame (W, \leq) is the p-morphic image (w.r.t. its supremum relation) of a poset frame (W', \leq') satisfying

 $\forall w', v', u' \in W' \left(w' \in \min\{u', v'\} \Leftrightarrow w' = \sup\{u', v'\} \right).$

Proof idea.

Use the preceding lemma to iteratively resolve all failures of

$$w' \in \min\{u', v'\} \Rightarrow w' = \sup\{u', v'\}. \quad \Box$$

Thus, we have concluded our proof of MIL = MIL^{Min}; in this setting, the two interpretations cannot be told apart.

This raises the question: when can we tell the interpretations apart?

From partial orders to preorders:

• Our logics are defined over *posets*:

 $MIL_{Pos} := MIL, \qquad MIL_{Pos}^{Min} := MIL^{Min}$

From partial orders to preorders:

• Our logics are defined over *posets*:

 $MIL_{Pos} := MIL, \qquad MIL_{Pos}^{Min} := MIL^{Min}$

• What happens if we generalize to preorders *MIL*_{Pre}, *MIL*_{Pre}^{Min}?

From partial orders to preorders:

• Our logics are defined over *posets*:

 $MIL_{Pos} := MIL, \qquad MIL_{Pos}^{Min} := MIL^{Min}$

- What happens if we generalize to preorders *MIL*_{Pre}, *MIL*_{Pre}^{Min}?
- Answer: Nothing.

From partial orders to preorders:

• Our logics are defined over *posets*:

 $MIL_{Pos} := MIL, \qquad MIL_{Pos}^{Min} := MIL^{Min}$

- What happens if we generalize to preorders *MIL_{Pre}*, *MIL^{Min}_{Pre}*?
- Answer: Nothing. We get the exact same logics:

$$MIL_{Pre} = MIL_{Pos} = MIL_{Pre}^{Min} = MIL_{Pos}^{Min}$$

From partial orders to preorders:

• Our logics are defined over *posets*:

 $MIL_{Pos} := MIL, \qquad MIL_{Pos}^{Min} := MIL^{Min}$

- What happens if we generalize to preorders *MIL*_{Pre}, *MIL*_{Pre}^{Min}?
- Answer: Nothing. We get the exact same logics:

$$MIL_{Pre} = MIL_{Pos} = MIL_{Pre}^{Min} = MIL_{Pos}^{Min}$$

Adding vocabulary:

From partial orders to preorders:

• Our logics are defined over *posets*:

 $MIL_{Pos} := MIL, \qquad MIL_{Pos}^{Min} := MIL^{Min}$

- What happens if we generalize to preorders *MIL*_{Pre}, *MIL*_{Pre}^{Min}?
- Answer: Nothing. We get the exact same logics:

$$MIL_{Pre} = MIL_{Pos} = MIL_{Pre}^{Min} = MIL_{Pos}^{Min}$$

Adding vocabulary:

 \cdot What happens if we add the implication '\' with semantics

 $v\Vdash \varphi \backslash \psi \quad \text{iff} \quad \forall u, w([u\Vdash \varphi, w = \sup\{u,v\}/w \in \min\{u,v\}] \Rightarrow w \Vdash \psi)$

From partial orders to preorders:

• Our logics are defined over *posets*:

 $MIL_{Pos} := MIL, \qquad MIL_{Pos}^{Min} := MIL^{Min}$

- What happens if we generalize to preorders *MIL_{Pre}*, *MIL^{Min}_{Pre}*?
- Answer: Nothing. We get the exact same logics:

$$MIL_{Pre} = MIL_{Pos} = MIL_{Pre}^{Min} = MIL_{Pos}^{Min}$$

Adding vocabulary:

 $\cdot\,$ What happens if we add the implication '\' with semantics

 $v\Vdash \varphi \backslash \psi \quad \text{iff} \quad \forall u, w([u\Vdash \varphi, w = \sup\{u,v\}/w \in \min\{u,v\}] \Rightarrow w\Vdash \psi)$

• Answer: Again nothing:

$$MIL_{1-Pre} = MIL_{1-Pos} = MIL_{1-Pre}^{Min} = MIL_{1-Pos}^{Min}$$

From partial orders to preorders:

• Our logics are defined over *posets*:

 $MIL_{Pos} := MIL, \qquad MIL_{Pos}^{Min} := MIL^{Min}$

- What happens if we generalize to preorders *MIL_{Pre}*, *MIL^{Min}_{Pre}*?
- Answer: Nothing. We get the exact same logics:

$$MIL_{Pre} = MIL_{Pos} = MIL_{Pre}^{Min} = MIL_{Pos}^{Min}$$

Adding vocabulary:

 $\cdot\,$ What happens if we add the implication '\' with semantics

 $v\Vdash \varphi \backslash \psi \quad \text{iff} \quad \forall u, w([u\Vdash \varphi, w = \sup\{u,v\}/w \in \min\{u,v\}] \Rightarrow w \Vdash \psi)$

Answer: Again nothing:

$$MIL_{\-Pre} = MIL_{\-Pos} = MIL_{\-Pre}^{Min} = MIL_{\-Pos}^{Min}$$

Going finite:

• What if we only consider *finite* posets?

From partial orders to preorders:

• Our logics are defined over *posets*:

 $MIL_{Pos} := MIL, \qquad MIL_{Pos}^{Min} := MIL^{Min}$

- What happens if we generalize to preorders *MIL_{Pre}*, *MIL^{Min}_{Pre}*?
- Answer: Nothing. We get the exact same logics:

$$MIL_{Pre} = MIL_{Pos} = MIL_{Pre}^{Min} = MIL_{Pos}^{Min}$$

Adding vocabulary:

 $\cdot\,$ What happens if we add the implication '\' with semantics

 $v\Vdash \varphi \backslash \psi \quad \text{iff} \quad \forall u, w([u\Vdash \varphi, w = \sup\{u,v\}/w \in \min\{u,v\}] \Rightarrow w \Vdash \psi)$

Answer: Again nothing:

$$MIL_{1-Pre} = MIL_{1-Pos} = MIL_{1-Pre}^{Min} = MIL_{1-Pos}^{Min}$$

Going finite:

- What if we only consider *finite* posets?
- Answer: They come apart! B/c $MIL \not\supseteq (Pp \land Pq) \rightarrow P\langle \sup \rangle pq \in MIL^{Min}$

14

Summary and main themes:

- Proved that $\langle \sup \rangle$ and $\langle \min \rangle$ interpretations result in the same logic $MIL = MIL^{Min}$.
 - Showed that *MIL^{Min}* is sound w.r.t. to axiomatization of *MIL*.
 - · Collapsed the minimum-relation into the supremum-relation s.t.

$$w' \in \min\{u',v'\} \Leftrightarrow w' = \sup\{u',v'\}$$

- · Obtained axiomatization and decidability for free.
- Considered other settings uncapable of distinguishing the interpretations: preorders and augmenting with '\'; but noted that the induced logics do come apart on finite structures.

Summary and main themes:

- Proved that $\langle \sup \rangle$ and $\langle \min \rangle$ interpretations result in the same logic $MIL = MIL^{Min}$.
 - Showed that *MIL^{Min}* is sound w.r.t. to axiomatization of *MIL*.
 - Collapsed the minimum-relation into the supremum-relation s.t.

$$w' \in \min\{u',v'\} \Leftrightarrow w' = \sup\{u',v'\}$$

- · Obtained axiomatization and decidability for free
- Considered other settings uncapable of distinguishing the interpretations: preorders and augmenting with '\'; but noted that the induced logics do come apart on finite structures.

Summary and main themes:

- Proved that $\langle \sup \rangle$ and $\langle \min \rangle$ interpretations result in the same logic $MIL = MIL^{Min}$.
 - Showed that *MIL^{Min}* is sound w.r.t. to axiomatization of *MIL*.
 - Collapsed the minimum-relation into the supremum-relation s.t.

$$w' \in \min\{u',v'\} \Leftrightarrow w' = \sup\{u',v'\}$$

- · Obtained axiomatization and decidability for free.
- Considered other settings uncapable of distinguishing the interpretations: preorders and augmenting with '\'; but noted that the induced logics do come apart on finite structures.

Summary and main themes:

- Proved that $\langle \sup \rangle$ and $\langle \min \rangle$ interpretations result in the same logic $MIL = MIL^{Min}$.
 - Showed that *MIL^{Min}* is sound w.r.t. to axiomatization of *MIL*.
 - Collapsed the minimum-relation into the supremum-relation s.t.

$$w' \in \min\{u',v'\} \Leftrightarrow w' = \sup\{u',v'\}$$

- Obtained axiomatization and decidability for free.
- Considered other settings uncapable of distinguishing the interpretations: preorders and augmenting with '\'; but noted that the induced logics do come apart on finite structures.

Summary and main themes:

- Proved that $\langle \sup \rangle$ and $\langle \min \rangle$ interpretations result in the same logic $MIL = MIL^{Min}$.
 - Showed that *MIL^{Min}* is sound w.r.t. to axiomatization of *MIL*.
 - Collapsed the minimum-relation into the supremum-relation s.t.

$$w' \in \min\{u',v'\} \Leftrightarrow w' = \sup\{u',v'\}$$

- Obtained axiomatization and decidability for free.
- Considered other settings uncapable of distinguishing the interpretations: preorders and augmenting with '\'; but noted that the induced logics do come apart on finite structures.

Thank you!

Knudstorp, S. B. (Forthcoming). **"Modal Information Logics: Axiomatizations and Decidability".** In: *Journal of Philosophical Logic* (cit. on pp. 8–16, 19–28).

Van Benthem, J. (1996). "Modal Logic as a Theory of Information". In: Logic and Reality. Essays on the Legacy of Arthur Prior. Ed. by J. Copeland. Clarendon Press, Oxford, pp. 135–168 (cit. on pp. 8–16).

The principal lemma

Principal lemma

Let (W, \leq) be a poset frame and $\{w, u, v\} \subseteq W$ s.t. $w \in \min\{u, v\}$ but $w \neq \sup\{u, v\}$. Then (W, \leq) is the p-morphic image (w.r.t. the supremum relation) of a poset frame (W', \leq') s.t.

- 1. $W \subseteq W', |W'| \le \max\{\aleph_0, |W|\};$
- $2. \leq' \cap (W \times W) = \leq;$

3. if
$$x = \sup\{y, z\}$$
, then $x = \sup'\{y, z\}$;

4. $w \notin \min'\{u, v\}$.

Proof.

Let
$$W' := W \sqcup \downarrow w = \{(x, 0), (y, 1) \mid x \in W, y \in \downarrow w\}$$
, and

 $f:W'\to W\!,(x,i)\mapsto x$

For all $(x,i),(y,j)\in W'$, we let $(y,j)\leq'(x,i)$ iff

- $\cdot \ i=0$ and $y\leq x$, or
- $\cdot \ j=i=1$ and $y\leq x$, or
- $\cdot j = 0, i = 1, y \in A \text{ and } x = w.$

To show: (1) (W', \leq') is a poset frame; (2) 1.-4. are satisfied; and (3) f is an onto p-morphism.

Completeness of MIL: the basic idea

Example

