Modal Information Logic of Incomparable Fusions

Søren Brinck Knudstorp
Extract from MSc thesis, supervised by Johan van Benthem and Nick Bezhanishvili

September 19, 2023
Universiteit van Amsterdam

Outline of the talk

- Introduction and motivation
- Proof (outline) of main theorem
- Conclusion

Defining the basic modal information logics (MILs)

Definition (language and semantics)

The language is given by

$$
\varphi::=\perp|p| \neg \varphi|\varphi \vee \psi|\langle\min \rangle \varphi \psi
$$

and the semantics of ' $\langle\mathrm{min}\rangle$ ' is:

$$
\begin{array}{r}
w \Vdash\langle\min \rangle \varphi \psi \quad \text { iff } \quad \exists u, v(u \Vdash \varphi ; v \Vdash \psi ; \\
w \in \min \{u, v\})
\end{array}
$$

Definition (frames and logics)

on W (i.e., refl., tran., and anti-symm.)
Depending on the interpretation of the modality, we get two logics:

- MIL ${ }^{\text {Min }}$, our modal information logic of incomparable fusions;
- MIL, the usual modal information logic (over posets).

Defining the basic modal information logics (MILs)

Definition (language and semantics)

The language is given by

$$
\varphi::=\perp|p| \neg \varphi|\varphi \vee \psi|\langle\min \rangle \varphi \psi
$$

and the semantics of ' $\langle\mathrm{min}\rangle$ ' is:

$$
\begin{array}{r}
w \Vdash\langle\min \rangle \varphi \psi \quad \text { iff } \quad \exists u, v(u \Vdash \varphi ; v \Vdash \psi ; \\
w \in \min \{u, v\})
\end{array}
$$

Example

$w, w^{\prime} \Vdash\langle\min \rangle p q$, but $w, w^{\prime} \nVdash\langle\sup \rangle p q$

Definition (frames and logics)

on W (i.e., refl., tran., and anti-symm.)
Depending on the interpretation of the modality, we get two logics:

- MIL ${ }^{\text {Min }}$. our modal information logic of incomparable fusions:
- MIL, the usual modal information logic (over posets).

Defining the basic modal information logics (MILs)

Definition (language and semantics)

The language is given by

$$
\varphi::=\perp|p| \neg \varphi|\varphi \vee \psi|\langle\min \rangle \varphi \psi
$$

and the semantics of ' $\langle\mathrm{min}\rangle$ ' is:

$$
\begin{array}{r}
w \Vdash\langle\min \rangle \varphi \psi \quad \text { iff } \quad \exists u, v(u \Vdash \varphi ; v \Vdash \psi ; \\
w \in \min \{u, v\})
\end{array}
$$

Definition (frames and logics)

- A poset frame is a pair (W, \leq), where W is a set and \leq is a partial order on W (i.e., refl., tran., and anti-symm.).

Depending on the interpretation of the modality, we get two

Defining the basic modal information logics (MILs)

Definition (language and semantics)

The language is given by

$$
\varphi::=\perp|p| \neg \varphi|\varphi \vee \psi|\langle\min \rangle \varphi \psi
$$

and the semantics of ' $\langle\mathrm{min}\rangle$ ' is:

$$
\begin{array}{r}
w \Vdash\langle\min \rangle \varphi \psi \quad \text { iff } \quad \exists u, v(u \Vdash \varphi ; v \Vdash \psi ; \\
w \in \min \{u, v\})
\end{array}
$$

Example

$w, w^{\prime} \Vdash\langle\min \rangle p q$, but $w, w^{\prime} \nVdash\langle\sup \rangle p q$

Definition (frames and logics)

- A poset frame is a pair (W, \leq), where W is a set and \leq is a partial order on W (i.e., refl., tran., and anti-symm.).
- Depending on the interpretation of the modality, we get two logics:
- MIL ${ }^{\text {Min }}$, our modal information logic of incomparable fusions;

Defining the basic modal information logics (MILs)

Definition (language and semantics)

The language is given by

$$
\varphi::=\perp|p| \neg \varphi|\varphi \vee \psi|\langle\min \rangle \varphi \psi
$$

and the semantics of ' $\langle\mathrm{min}\rangle$ ' is:

$$
\begin{array}{r}
w \Vdash\langle\min \rangle \varphi \psi \quad \text { iff } \quad \exists u, v(u \Vdash \varphi ; v \Vdash \psi ; \\
w \in \min \{u, v\})
\end{array}
$$

Example

$w, w^{\prime} \Vdash\langle\min \rangle p q$, but $w, w^{\prime} \nVdash\langle\sup \rangle p q$

Definition (frames and logics)

- A poset frame is a pair (W, \leq), where W is a set and \leq is a partial order on W (i.e., refl., tran., and anti-symm.).
- Depending on the interpretation of the modality, we get two logics:
- MIL ${ }^{\text {Min }}$, our modal information logic of incomparable fusions;
- MIL, the usual modal information logic (over posets).

Motivation and objectives

Why MILs?
2. Modestly extend $\mathbf{S} 4$

Why minimal upper bounds?
1.' Formalizes (informational) settings in which states can have multiple
incomparable 'fusions'
2.' The resulting logic modestly extends S4
3. But primarily, motivated by

Knudstorp (Forthcoming) axiomatizes MIL, and its completeness proof relies heavily on this distinction between minimal and least upper bounds.

Objectives:
(n) riguring out how MIL Min and MIL relate;
(A) Axiomatizing MIL ${ }^{\text {Min }}$; and
(D) Proving (un)decidability.

Motivation and objectives

Why MILs?

1. Introduced to model a theory of information (by van Benthem (1996))
2. Modestly extend S4

Why minimal upper bounds?

1. Enrmalizes (informational) settings in which states can have multiple incomparable 'fusions'
2.' The resulting logic modestly extends S4
2. But nrimarily motivated by

Knudstorp (Forthcoming) axiomatizes MIL, and its completeness proof relies heavilv on this distinction between minimal and least upder bounds.

Objectives:
(D) Figurins out how MILMin and MIL relate;
(A) Axiomatizing MIL ${ }^{\text {Min }}$; and
(D) Proving (un)decidability.

Motivation and objectives

Why MILs?

1. Introduced to model a theory of information (by van Benthem (1996))
2. Modestly extend $\mathbf{S} 4$

Why minimal upper bounds?
1.' Formalizes (informational) settings in which states can have multiple incomparable 'fusions'
2.' The resulting logic modestly extends S4
3. But primarily, motivated by

Knudstorp (Forthcoming) axiomatizes MIL, and its completeness proof relies heavily on this distinction between minimal and least upper bounds.

Objectives:
(n) riguring out how MIL Min and MIL relate;
(A) Axiomatizing MIL ${ }^{\text {Min }}$; and
(D) Proving (un)decidability

Motivation and objectives

Why MILs?

1. Introduced to model a theory of information (by van Benthem (1996))
2. Modestly extend $\mathbf{S} 4$

Why minimal upper bounds?

```
Formalizes (informational) settings in which states can have multiple incomparable 'fusions'
2.' The resulting logic modestly extends S4
3. But primarily, motivated by
Knudstorp (Forthcoming) axiomatizes MIL, and its completeness proof relies heavily on this distinction between minimal and least upper bounds.
```


Objectives:

```
(n) riguning out how MIL Min and MIL relate;
(A) Axiomatizing MIL \({ }^{\text {Min }}\); and
(D) Proving (un)decidability.
```


Motivation and objectives

Why MILs?

1. Introduced to model a theory of information (by van Benthem (1996))
2. Modestly extend $\mathbf{S} 4$

Why minimal upper bounds?
1.' Formalizes (informational) settings in which states can have multiple incomparable 'fusions'
2.' The resulting logic modestly extends $\mathbf{S} 4$

Knudstorp (Forthcoming) axiomatizes MIL, and its completeness proof relies heavily on this distinction between minimal and least upper bounds.

Objectives:
(D) Figurins out how MIL Min and MIL relate;
(A) Axiomatizing MIL ${ }^{\text {Min }}$; and
(D) Proving (un)decidability.

Motivation and objectives

Why MILs?

1. Introduced to model a theory of information (by van Benthem (1996))
2. Modestly extend $\mathbf{S} 4$

Why minimal upper bounds?
1.' Formalizes (informational) settings in which states can have multiple incomparable 'fusions'
2.' The resulting logic modestly extends $\mathbf{S} 4$
3. But primarily, motivated by technical/mathematical curiosity:

Knudstorp (Forthcoming) axiomatizes MIL, and its completeness proof relies heavily on this distinction between minimal and least upper bounds.

Objectives:
(D) Figurins out how MILMin and MIL relate;
(A) Axiomatizing MIL ${ }^{\text {Min }}$; and
(D) Proving (un)decidability.

Motivation and objectives

Why MILs?

1. Introduced to model a theory of information (by van Benthem (1996))
2. Modestly extend $\mathbf{S} 4$

Why minimal upper bounds?
1.' Formalizes (informational) settings in which states can have multiple incomparable 'fusions'
2.' The resulting logic modestly extends $\mathbf{S} 4$
3. But primarily, motivated by technical/mathematical curiosity:

Knudstorp (Forthcoming) axiomatizes MIL, and its completeness proof relies heavily on this distinction between minimal and least upper bounds.

Objectives:
(D) Figurins out how MIL Min and MIL relate;
(A) Axiomatizing MIL ${ }^{\text {Min }}$; and
(D) Proving (un)decidability

Motivation and objectives

Why MILs?

1. Introduced to model a theory of information (by van Benthem (1996))
2. Modestly extend $\mathbf{S} 4$

Why minimal upper bounds?
1.' Formalizes (informational) settings in which states can have multiple incomparable 'fusions'
2.' The resulting logic modestly extends $\mathbf{S} 4$
3. But primarily, motivated by technical/mathematical curiosity:

Knudstorp (Forthcoming) axiomatizes MIL, and its completeness proof relies heavily on this distinction between minimal and least upper bounds.

Objectives:

(R) Figuring out how MIL ${ }^{\text {Min }}$ and MIL relate;
(A) Axiomatizing MIL ${ }^{\text {Min }}$; and
(D) Proving (un)decidability

Motivation and objectives

Why MILs?

1. Introduced to model a theory of information (by van Benthem (1996))
2. Modestly extend $\mathbf{S} 4$

Why minimal upper bounds?
1.' Formalizes (informational) settings in which states can have multiple incomparable 'fusions'
2.' The resulting logic modestly extends $\mathbf{S} 4$
3. But primarily, motivated by technical/mathematical curiosity:

Knudstorp (Forthcoming) axiomatizes MIL, and its completeness proof relies heavily on this distinction between minimal and least upper bounds.

Objectives:
(R) Figuring out how MIL ${ }^{\text {Min }}$ and MIL relate;
(A) Axiomatizing $M I L^{\text {Min }}$; and
(D) Proving (un)decidability.

It seems that one should, at least, expect MIL \neq MIL $^{\text {Min }}$

However, the main concern for the rest of the talk is to show that, in fact, MIL $=$ MIL ${ }^{\text {Min }}$

Proof of MIL \subseteq MIL ${ }^{\text {Min }}$

Our starting point is the following result:

```
Axiomatization of MIL [Knudstorp (Forthcoming)]
MIL is (sound and complete w.r.t.) the least normal modal logic with axioms:
p\wedgeq->\langlesup\ranglepq
PPp}->P
\langlesup\ranglepq -> <sup\rangleqp
(p\wedge\langlesup\rangleqr) ->\langlesup\ranglepq
```

Using this we get:
Proposition
MIL \subset MIL ${ }^{\text {Min }}$

Proof.
Routine check that MIL Min is a normal modal logic validating (Re.), (4), (Co.), (Dk.).

Proof of MIL $\subseteq M I L^{\text {Min }}$

Our starting point is the following result:

Axiomatization of MIL [Knudstorp (Forthcoming)]

MIL is (sound and complete w.r.t.) the least normal modal logic with axioms:

$$
\begin{aligned}
& \text { (Re.) } p \wedge q \rightarrow\langle\text { sup }\rangle p q \\
& \text { (4) } P P p \rightarrow P p \\
& \text { (Co.) }\langle\text { sup }\rangle p q \rightarrow\langle\text { sup }\rangle q p \\
& \text { (Dk.) }(p \wedge\langle\text { sup }\rangle q r) \rightarrow\langle\text { sup }\rangle p q
\end{aligned}
$$

Using this we get:

Proof.

Proof of MIL $\subseteq M I L^{\text {Min }}$

Our starting point is the following result:

Axiomatization of MIL [Knudstorp (Forthcoming)]

MIL is (sound and complete w.r.t.) the least normal modal logic with axioms:

$$
\begin{aligned}
\text { (Re.) } & p \wedge q \rightarrow\langle\text { sup }\rangle p q \\
\text { (4) } & P P p \rightarrow P p \\
\text { (Co.) } & \langle\text { sup }\rangle p q \rightarrow\langle\text { sup }\rangle q p \\
\text { (Dk.) } & (p \wedge\langle\text { sup }\rangle q r) \rightarrow\langle\text { sup }\rangle p q
\end{aligned}
$$

Using this we get:

Proposition

```
MIL\subseteqMIL Min
```


Proof of MIL \subseteq MIL $^{\text {Min }}$

Our starting point is the following result:

Axiomatization of MIL [Knudstorp (Forthcoming)]

MIL is (sound and complete w.r.t.) the least normal modal logic with axioms:
(Re.) $p \wedge q \rightarrow\langle$ sup $\rangle p q$
(4) $P P p \rightarrow P p$
(Co.) $\langle\sup \rangle p q \rightarrow\langle$ sup $\rangle q p$
(Dk.) $(p \wedge\langle$ sup $\rangle q r) \rightarrow\langle$ sup $\rangle p q$
Using this we get:

Proposition

$M I L \subseteq M I L^{\text {Min }}$

Proof.

Routine check that MIL ${ }^{\text {Min }}$ is a normal modal logic validating (Re.), (4), (Co.), (Dk.).

Proof of MIL \supseteq MIL $^{\text {Min }}$: corollaries and framework

It remains to show that
Theorem
$M I L \supseteq M I L^{\text {Min }}$
Note that this would also allow us to deduce:
\square
Framework for proof of MIL \supseteq MIL $^{\text {Min }}$

- Suppose that $\varphi \notin$ MIL
- Then $\mathbb{M} S, w \nVdash \varphi$ for some supremum-model \mathbb{M}^{S}
- Idea: Transform \mathbb{M}^{S} into a minimum-model \mathbb{M}^{M} s.t. \mathbb{M}^{M}, w $\nVdash \varphi$. Formally, the proof goes by representation using onto p-morphisms.

Proof of MIL \supseteq MIL $^{\text {Min }}$: corollaries and framework

It remains to show that
Theorem
$M I L \supseteq M I L^{\text {Min }}$
Note that this would also allow us to deduce:
Corollary (Axiomatization and Decidability)
MIL ${ }^{\text {Min }}$ is decidable and axiomatized as shown before (because MIL is [cf. Knudstorp (Forthcoming)]).

Framework for proof of MIL \supseteq MIL ${ }^{\text {Min }}$

- Suppose that $\varphi \notin$ MIL
- Then $\mathbb{M}^{S}, w \nVdash \varphi$ for some supremum-model \mathbb{M}^{S}.
- Idea: Transform \mathbb{M}^{S} into a minimum-model \mathbb{M}^{M} s.t. $\mathbb{M}^{M}, w \nVdash \varphi$. Formally, the proof goes by representation using onto p-morphisms.

Proof of MIL \supseteq MIL $^{\text {Min }}$: corollaries and framework

It remains to show that
Theorem
$M I L \supseteq M / L^{\text {Min }}$
Note that this would also allow us to deduce:
Corollary (Axiomatization and Decidability)
MIL ${ }^{\text {Min }}$ is decidable and axiomatized as shown before (because MIL is [cf. Knudstorp (Forthcoming)]).

Framework for proof of MIL \supseteq MIL ${ }^{\text {Min }}$.

- Suppose that $\varphi \notin$ MIL.

Idea: Transform \mathbb{M}^{S} int

Proof of MIL \supseteq MIL $^{\text {Min }}$: corollaries and framework

It remains to show that
Theorem
MIL \supseteq MIL ${ }^{\text {Min }}$
Note that this would also allow us to deduce:
Corollary (Axiomatization and Decidability)
MIL ${ }^{\text {Min }}$ is decidable and axiomatized as shown before (because MIL is [cf. Knudstorp (Forthcoming)]).

Framework for proof of MIL \supseteq MIL ${ }^{\text {Min }}$.

- Suppose that $\varphi \notin$ MIL.
- Then $\mathbb{M}^{S}, w \nVdash \varphi$ for some supremum-model \mathbb{M}^{S}.

Idea: Transform \mathbb{M}^{S} int
mally, the proof goes by

Proof of MIL \supseteq MIL $^{\text {Min }}$: corollaries and framework

It remains to show that
Theorem
$M I L \supseteq M / L^{\text {Min }}$
Note that this would also allow us to deduce:

Corollary (Axiomatization and Decidability)

MIL ${ }^{\text {Min }}$ is decidable and axiomatized as shown before (because MIL is [cf. Knudstorp (Forthcoming)]).

Framework for proof of MIL \supseteq MIL ${ }^{\text {Min }}$.

- Suppose that $\varphi \notin$ MIL.
- Then $\mathbb{M}^{S}, w \nVdash \varphi$ for some supremum-model \mathbb{M}^{S}.
- Idea: Transform \mathbb{M}^{S} into a minimum-model \mathbb{M}^{M} s.t. $\mathbb{M}^{M}, w \nVdash \varphi$.

Proof of MIL \supseteq MIL $^{\text {Min }}$: corollaries and framework

It remains to show that
Theorem
$M I L \supseteq M / L^{\text {Min }}$
Note that this would also allow us to deduce:

Corollary (Axiomatization and Decidability)

MIL ${ }^{\text {Min }}$ is decidable and axiomatized as shown before (because MIL is [cf. Knudstorp (Forthcoming)]).

Framework for proof of MIL \supseteq MIL ${ }^{\text {Min }}$.

- Suppose that $\varphi \notin$ MIL.
- Then $\mathbb{M}^{S}, w \nVdash \varphi$ for some supremum-model \mathbb{M}^{S}.
- Idea: Transform \mathbb{M}^{S} into a minimum-model \mathbb{M}^{M} s.t. $\mathbb{M}^{M}, w \nVdash \varphi$. Formally, the proof goes by representation using onto p-morphisms.

Proof of MIL \supseteq MIL $^{\text {Min }}$: observations and ideas

Observation: Given a partial order ' \leq ': $w^{\prime} \in \min \left\{u^{\prime}, v^{\prime}\right\} \Leftarrow w^{\prime}=\sup \left\{u^{\prime}, v^{\prime}\right\}$ Recall: We want to mend $\mathbb{M}^{S} \rightsquigarrow \mathbb{M}^{M}$ (in a satisfaction-preserving way) Idea: Can we make it so that

Problem becomes: What to do if
Observation: There are two ways for an upper-bounded set $\{u, v\}$ to not have a supremum:
(i) Incomparable upper bounds; and
(ii) Infinitely descending chain(s) of upper bounds.

Main idea: Transform all instances of (i) in \mathbb{M}^{S} into instances of (ii)!

Proof of MIL \supseteq MIL $^{\text {Min }}$: observations and ideas

Observation: Given a partial order ' \leq ': $w^{\prime} \in \min \left\{u^{\prime}, v^{\prime}\right\} \Leftarrow w^{\prime}=\sup \left\{u^{\prime}, v^{\prime}\right\}$ Recall: We want to mend $\mathbb{M}^{S} \rightsquigarrow \mathbb{M}^{M}$ (in a satisfaction-preserving way).

Idea: Can we make it so that
Problem becomes: What to do if
ohservation: There are two ways for an upper-bounded set $\{u, v\}$ to not have a supremum:
(i) Incomparable upper bounds; and
(ii) Infinitely descending chain(s) of unner bounds.

Main idea: Transform all instances of (i) in \mathbb{M}^{S} into instances of (ii)!

Proof of MIL \supseteq MIL $^{\text {Min }}$: observations and ideas

Observation: Given a partial order ' \leq ': $w^{\prime} \in \min \left\{u^{\prime}, v^{\prime}\right\} \Leftarrow w^{\prime}=\sup \left\{u^{\prime}, v^{\prime}\right\}$ Recall: We want to mend $\mathbb{M}^{S} \rightsquigarrow \mathbb{M}^{M}$ (in a satisfaction-preserving way). Idea: Can we make it so that

$$
w^{\prime} \in \min \left\{u^{\prime}, v^{\prime}\right\} \Leftrightarrow w^{\prime}=\sup \left\{u^{\prime}, v^{\prime}\right\} ?
$$

Problem becomes: What to do if
Observation: There are two ways for an upper-bounded set $\{u, v\}$ to not
have a supremum:
(i) Incomparable upper bounds; and
(ii) Infinitely descending chain(s) of upper bounds.

Main idea: Transform all instances of (i) in \mathbb{M}^{S} into instances of (ii)!

Proof of MIL \supseteq MIL $^{\text {Min }}$: observations and ideas

Observation: Given a partial order ' \leq ': $w^{\prime} \in \min \left\{u^{\prime}, v^{\prime}\right\} \Leftarrow w^{\prime}=\sup \left\{u^{\prime}, v^{\prime}\right\}$ Recall: We want to mend $\mathbb{M}^{S} \rightsquigarrow \mathbb{M}^{M}$ (in a satisfaction-preserving way). Idea: Can we make it so that $w^{\prime} \in \min \left\{u^{\prime}, v^{\prime}\right\} \Leftrightarrow w^{\prime}=\sup \left\{u^{\prime}, v^{\prime}\right\} ?$
Problem becomes: What to do if

$$
w^{\prime} \in \min \left\{u^{\prime}, v^{\prime}\right\} \text { but } w^{\prime} \neq \sup \left\{u^{\prime}, v^{\prime}\right\} ?
$$

Observation: There are two ways for an upper-bounded set $\{u, v\}$ to not have a supremum:
(i) incompara'ble upper bounds; and
(ii) Infinitely descending chain(s) of upper bounds.

Main idea: Transform all instances of (i) in \mathbb{M}^{S} into instances of (ii)!

Proof of MIL \supseteq MIL $^{\text {Min }}$: observations and ideas

Observation: Given a partial order ' \leq ': $w^{\prime} \in \min \left\{u^{\prime}, v^{\prime}\right\} \Leftarrow w^{\prime}=\sup \left\{u^{\prime}, v^{\prime}\right\}$ Recall: We want to mend $\mathbb{M}^{S} \rightsquigarrow \mathbb{M}^{M}$ (in a satisfaction-preserving way). Idea: Can we make it so that $w^{\prime} \in \min \left\{u^{\prime}, v^{\prime}\right\} \Leftrightarrow w^{\prime}=\sup \left\{u^{\prime}, v^{\prime}\right\} ?$
Problem becomes: What to do if

$$
w^{\prime} \in \min \left\{u^{\prime}, v^{\prime}\right\} \text { but } w^{\prime} \neq \sup \left\{u^{\prime}, v^{\prime}\right\} ?
$$

Observation: There are two ways for an upper-bounded set $\{u, v\}$ to not have a supremum:
(i) Incomparable upper bounds; and
(ii) Infinitely descending chain(s) of upper bounds.

Main idea: Transform all instances of (i) in \mathbb{M}^{S} into instances of (ii)!

Proof of MIL \supseteq MIL $^{\text {Min }}$: observations and ideas

Observation: Given a partial order ' \leq ': $w^{\prime} \in \min \left\{u^{\prime}, v^{\prime}\right\} \Leftarrow w^{\prime}=\sup \left\{u^{\prime}, v^{\prime}\right\}$ Recall: We want to mend $\mathbb{M}^{S} \rightsquigarrow \mathbb{M}^{M}$ (in a satisfaction-preserving way). Idea: Can we make it so that $w^{\prime} \in \min \left\{u^{\prime}, v^{\prime}\right\} \Leftrightarrow w^{\prime}=\sup \left\{u^{\prime}, v^{\prime}\right\} ?$
Problem becomes: What to do if

$$
w^{\prime} \in \min \left\{u^{\prime}, v^{\prime}\right\} \text { but } w^{\prime} \neq \sup \left\{u^{\prime}, v^{\prime}\right\} ?
$$

Observation: There are two ways for an upper-bounded set $\{u, v\}$ to not have a supremum:
(i) Incomparable upper bounds; and

Infinitely descending chain(s) of upper bounds.

Main idea: Transform all instances of (i) in \mathbb{M}^{S} into instances of (ii)!

Proof of MIL \supseteq MIL $^{\text {Min }}$: observations and ideas

Observation: Given a partial order ' \leq ': $w^{\prime} \in \min \left\{u^{\prime}, v^{\prime}\right\} \Leftarrow w^{\prime}=\sup \left\{u^{\prime}, v^{\prime}\right\}$ Recall: We want to mend $\mathbb{M}^{S} \rightsquigarrow \mathbb{M}^{M}$ (in a satisfaction-preserving way). Idea: Can we make it so that $w^{\prime} \in \min \left\{u^{\prime}, v^{\prime}\right\} \Leftrightarrow w^{\prime}=\sup \left\{u^{\prime}, v^{\prime}\right\} ?$
Problem becomes: What to do if

$$
w^{\prime} \in \min \left\{u^{\prime}, v^{\prime}\right\} \text { but } w^{\prime} \neq \sup \left\{u^{\prime}, v^{\prime}\right\} ?
$$

Observation: There are two ways for an upper-bounded set $\{u, v\}$ to not have a supremum:
(i) Incomparable upper bounds; and
(ii) Infinitely descending chain(s) of upper bounds.

Main idea: Transform all instances of (i) in \mathbb{M}^{S} into instances of (ii)!

Proof of MIL $\supseteq M^{\prime} L^{\text {Min }}$: observations and ideas

Observation: Given a partial order ' \leq ': $w^{\prime} \in \min \left\{u^{\prime}, v^{\prime}\right\} \Leftarrow w^{\prime}=\sup \left\{u^{\prime}, v^{\prime}\right\}$ Recall: We want to mend $\mathbb{M}^{S} \rightsquigarrow \mathbb{M}^{M}$ (in a satisfaction-preserving way). Idea: Can we make it so that $w^{\prime} \in \min \left\{u^{\prime}, v^{\prime}\right\} \Leftrightarrow w^{\prime}=\sup \left\{u^{\prime}, v^{\prime}\right\} ?$
Problem becomes: What to do if

$$
w^{\prime} \in \min \left\{u^{\prime}, v^{\prime}\right\} \text { but } w^{\prime} \neq \sup \left\{u^{\prime}, v^{\prime}\right\} ?
$$

Observation: There are two ways for an upper-bounded set $\{u, v\}$ to not have a supremum:
(i) Incomparable upper bounds; and
(ii) Infinitely descending chain(s) of upper bounds.

Main idea: Transform all instances of (i) in \mathbb{M}^{S} into instances of (ii)!

Proof of MIL \supseteq MIL $^{\text {Min }}$: naive transformation

From (i) to (ii): naive idea

Problem 1: Not enough to 'duplicate' w (and m)

Proof of MIL \supseteq MIL $^{\text {Min }}$: naive transformation

From (i) to (ii): naive idea

Problem 1: Not enough to 'duplicate' w (and m)

Proof of MIL \supseteq MIL $^{\text {Min }}$: naive transformation

From (i) to (ii): naive idea

Problem 1: Not enough to 'duplicate' w (and m)
Problem 2: What if $x=\sup \{y, z\}$ for, say, $y \leq u$ and $z \leq v$?

Proof of MIL \supseteq MIL $^{\text {Min }}:$ proper transformation

Problem 1: Not enough to duplicate w
Solution 1: Duplicate $\downarrow w$ (and place each duplicate right below original) Problem 2: What if $x=\sup \{y, z\}$ for, say, $y \leq u$ and $z \leq v$?

Solution 2. For x to stay sunromum of $\left\{_{n, z}, \boldsymbol{z}\right.$, we must make r see w_{0} (and w_{1}, etc.). In general, the least downset containing $\{u, v\}$ and closed under binary suprema should see w_{0} (and w_{1}, etc.).

Using this transformation nssentially allows us to prove the following:
\square relation) of a poset frame $\left(W^{\prime},<^{\prime}\right)$ s.t.
\qquad

Proof of MIL \supseteq MIL $^{\text {Min }}$: proper transformation

Problem 1: Not enough to duplicate w
Solution 1: Duplicate $\downarrow w$ (and place each duplicate right below original)
Problem 2: What if $x=\sup \{y, z\}$ for, say, $y \leq u$ and $z \leq v$?
Solution 2: For x to stay supremum of $\{y, z\}$, we must make x see w_{0} (and
w_{1}, etc.). In general, the least downset containing $\{u, v\}$ and closed under binary suprema should see w_{0} (and w_{1}, etc.).

Using this transformation essentially allows us to prove the following:

Proof of MIL \supseteq MIL $^{\text {Min }}$: proper transformation

Problem 1: Not enough to duplicate w
Solution 1: Duplicate $\downarrow w$ (and place each duplicate right below original)
Problem 2: What if $x=\sup \{y, z\}$ for, say, $y \leq u$ and $z \leq v$?
Solution 2: For x to stay supremum of $\{y, z\}$, we must make x see w_{0} (and
w_{1}, etc.). In general, the least downset containing $\{u, v\}$ and closed under binary suprema should see w_{0} (and w_{1}, etc.).

Using this transformation essentially allows us to prove the following:

Proof of MIL \supseteq MIL $^{\text {Min }}$: proper transformation

Problem 1: Not enough to duplicate w
Solution 1: Duplicate $\downarrow w$ (and place each duplicate right below original)
Problem 2: What if $x=\sup \{y, z\}$ for, say, $y \leq u$ and $z \leq v$?
Solution 2: For x to stay supremum of $\{y, z\}$, we must make x see w_{0} (and w_{1}, etc.).
binary suprema should see w_{0} (and w_{1}, etc.)
Using this transformation essentially allows us to prove the following:
\square

Proof of MIL \supseteq MIL ${ }^{\text {Min }}$: proper transformation

Problem 1: Not enough to duplicate w
Solution 1: Duplicate $\downarrow w$ (and place each duplicate right below original)
Problem 2: What if $x=\sup \{y, z\}$ for, say, $y \leq u$ and $z \leq v$?
Solution 2: For x to stay supremum of $\{y, z\}$, we must make x see w_{0} (and w_{1}, etc.). In general, the least downset containing $\{u, v\}$ and closed under binary suprema should see w_{0} (and w_{1}, etc.).

Using this transformation essentially allows us to prove the following:
\square
Let (W, \leq) be a poset frame and $\{w, u, v\} \subseteq W$ s.t. $w \in \min \{u, v\}$ but $w \neq \sup \{u, v\}$. Then (W, \leq) is the p -morphic image (w.r.t. the supremum relation) of a poset frame $\left(W^{\prime}, \leq^{\prime}\right)$ s.t.

Proof of MIL \supseteq MIL ${ }^{\text {Min }}$: proper transformation

Problem 1: Not enough to duplicate w
Solution 1: Duplicate $\downarrow w$ (and place each duplicate right below original)
Problem 2: What if $x=\sup \{y, z\}$ for, say, $y \leq u$ and $z \leq v$?
Solution 2: For x to stay supremum of $\{y, z\}$, we must make x see w_{0} (and w_{1}, etc.). In general, the least downset containing $\{u, v\}$ and closed under binary suprema should see w_{0} (and w_{1}, etc.).

Using this transformation essentially allows us to prove the following:

Proof of MIL \supseteq MIL ${ }^{\text {Min }}$: proper transformation

Problem 1: Not enough to duplicate w
Solution 1: Duplicate $\downarrow w$ (and place each duplicate right below original)
Problem 2: What if $x=\sup \{y, z\}$ for, say, $y \leq u$ and $z \leq v$?
Solution 2: For x to stay supremum of $\{y, z\}$, we must make x see w_{0} (and w_{1}, etc.). In general, the least downset containing $\{u, v\}$ and closed under binary suprema should see w_{0} (and w_{1}, etc.).

Using this transformation essentially allows us to prove the following:

Principal lemma

Let (W, \leq) be a poset frame and $\{w, u, v\} \subseteq W$ s.t. $w \in \min \{u, v\}$ but $w \neq \sup \{u, v\}$. Then (W, \leq) is the p-morphic image (w.r.t. the supremum relation) of a poset frame ($W^{\prime}, \leq^{\prime}$) s.t.

1. $W \subseteq W^{\prime},\left|W^{\prime}\right| \leq \max \left\{\aleph_{0},|W|\right\} ;$
2. $\leq^{\prime} \cap(W \times W)=\leq$;
3. if $x=\sup \{y, z\}$, then $x=\sup ^{\prime}\{y, z\}$;
4. $w \notin \min ^{\prime}\{u, v\}$.

Proof of MIL \supseteq MIL $^{\text {Min }}$: final steps

Proposition (representation)

Every poset frame (W, \leq) is the p-morphic image (w.r.t. its supremum relation) of a poset frame ($W^{\prime}, \leq^{\prime}$) satisfying

$$
\forall w^{\prime}, v^{\prime}, u^{\prime} \in W^{\prime}\left(w^{\prime} \in \min \left\{u^{\prime}, v^{\prime}\right\} \Leftrightarrow w^{\prime}=\sup \left\{u^{\prime}, v^{\prime}\right\}\right) .
$$

Proof idea.

Use the preceding lemma to iteratively resolve all failures of

Thus, we have concluded our proof of $M I L=M I L^{\text {Min }}$; in this setting, the two
interpretations cannot be told apart.

Proof of MIL \supseteq MIL $^{\text {Min }}$: final steps

Proposition (representation)

Every poset frame (W, \leq) is the p-morphic image (w.r.t. its supremum relation) of a poset frame ($W^{\prime}, \leq^{\prime}$) satisfying

$$
\forall w^{\prime}, v^{\prime}, u^{\prime} \in W^{\prime}\left(w^{\prime} \in \min \left\{u^{\prime}, v^{\prime}\right\} \Leftrightarrow w^{\prime}=\sup \left\{u^{\prime}, v^{\prime}\right\}\right)
$$

Proof idea.

Use the preceding lemma to iteratively resolve all failures of

$$
w^{\prime} \in \min \left\{u^{\prime}, v^{\prime}\right\} \Rightarrow w^{\prime}=\sup \left\{u^{\prime}, v^{\prime}\right\}
$$

Thus, we have concluded our proof of $M I L=M I L^{\text {Min }}$; in this setting, the two
interpretations cannot be told apart.

Proof of MIL \supseteq MIL $^{\text {Min }}$: final steps

Proposition (representation)

Every poset frame (W, \leq) is the p-morphic image (w.r.t. its supremum relation) of a poset frame $\left(W^{\prime}, \leq^{\prime}\right)$ satisfying

$$
\forall w^{\prime}, v^{\prime}, u^{\prime} \in W^{\prime}\left(w^{\prime} \in \min \left\{u^{\prime}, v^{\prime}\right\} \Leftrightarrow w^{\prime}=\sup \left\{u^{\prime}, v^{\prime}\right\}\right)
$$

Proof idea.

Use the preceding lemma to iteratively resolve all failures of

$$
w^{\prime} \in \min \left\{u^{\prime}, v^{\prime}\right\} \Rightarrow w^{\prime}=\sup \left\{u^{\prime}, v^{\prime}\right\}
$$

Thus, we have concluded our proof of MIL $=$ MIL ${ }^{\text {Min }}$; in this setting, the two interpretations cannot be told apart.

This raises the question: when can we tell the interpretations apart?

Telling apart the $\langle\min \rangle$ and \langle sup \rangle interpretations

From partial orders to preorders:

- Our logics are defined over posets:

$$
\text { MIL }_{\text {Pos }}:=\text { MIL }, \quad \text { MIL } L_{\text {Pos }}^{\operatorname{Min}}:=M I L^{\text {Min }}
$$

Telling apart the $\langle\min \rangle$ and \langle sup \rangle interpretations

From partial orders to preorders:

- Our logics are defined over posets:

$$
M I L_{\text {Pos }}:=\text { MIL, } \quad \text { MIL } L_{\text {Pos }}^{\operatorname{Min}}:=M I L^{\operatorname{Min}}
$$

-What happens if we generalize to preorders $M I L_{\text {pre }}, M I L_{\text {Pre }}^{M i n}$?

Telling apart the $\langle\min \rangle$ and \langle sup \rangle interpretations

From partial orders to preorders:

- Our logics are defined over posets:

$$
M I L_{\text {Pos }}:=\text { MIL, } \quad \text { MIL } L_{\text {Pos }}^{\operatorname{Min}}:=M I L^{\operatorname{Min}}
$$

- What happens if we generalize to preorders $M I L_{\text {pre }}, M I L_{\text {Pre }}^{M i n}$?
- Answer: Nothing.

Telling apart the $\langle\min \rangle$ and \langle sup \rangle interpretations

From partial orders to preorders:

- Our logics are defined over posets:

$$
\text { MIL } L_{\text {Pos }}:=\text { MIL, } \quad \text { MIL } L_{\text {Pos }}^{\operatorname{Min}}:=M I L^{\operatorname{Min}}
$$

-What happens if we generalize to preorders MIL $_{\text {Pre }}$, MIL $_{\text {Pre }}^{M i n}$?

- Answer: Nothing. We get the exact same logics:

$$
M I L_{\text {Pre }}=M I L_{\text {Pos }}=M I L_{\text {Pre }}^{\mathrm{Min}}=M I L_{\text {Pos }}^{\mathrm{Min}}
$$

Telling apart the $\langle\min \rangle$ and \langle sup \rangle interpretations

From partial orders to preorders:

- Our logics are defined over posets:

$$
\text { MIL } L_{\text {Pos }}:=\text { MIL, } \quad \text { MIL } L_{\text {Pos }}^{\operatorname{Min}}:=M I L^{\operatorname{Min}}
$$

-What happens if we generalize to preorders MIL $_{\text {Pre }}$, MIL $_{\text {Pre }}^{M i n}$?

- Answer: Nothing. We get the exact same logics:

$$
M I L_{\text {Pre }}=M I L_{\text {Pos }}=M I L_{\text {Pre }}^{\mathrm{Min}}=M I L_{\text {Pos }}^{\mathrm{Min}}
$$

Adding vocabulary:

Telling apart the $\langle\min \rangle$ and \langle sup \rangle interpretations

From partial orders to preorders:

- Our logics are defined over posets:

$$
\text { MIL } L_{\text {Pos }}:=\text { MIL, } \quad \text { MIL Min } L_{\text {Pos }}^{\operatorname{Min}}:=\text { MIL }^{\text {Min }}
$$

-What happens if we generalize to preorders MIL $_{\text {Pre }}$, MIL $_{\text {Pre }}^{M i n}$?

- Answer: Nothing. We get the exact same logics:

$$
M I L_{\text {Pre }}=M I L_{\text {Pos }}=M I L_{\text {Pre }}^{M i n}=M I L_{\text {Pos }}^{\operatorname{Min}}
$$

Adding vocabulary:

- What happens if we add the implication ' $\$ ' with semantics

$$
v \Vdash \varphi \backslash \psi \quad \text { iff } \quad \forall u, w([u \Vdash \varphi, w=\sup \{u, v\} / w \in \min \{u, v\}] \Rightarrow w \Vdash \psi)
$$

Telling apart the $\langle\min \rangle$ and \langle sup \rangle interpretations

From partial orders to preorders:

- Our logics are defined over posets:

$$
M I L_{\text {Pos }}:=\text { MIL }, \quad \text { MIL } L_{\text {Pos }}^{\operatorname{Min}}:=M I L^{\text {Min }}
$$

-What happens if we generalize to preorders $M I L_{\text {pre }}, M I L_{\text {Pre }}^{M i n}$?

- Answer: Nothing. We get the exact same logics:

$$
M I L_{\text {Pre }}=M I L_{\text {Pos }}=M I L_{\text {Pre }}^{M i n}=M I L_{\text {Pos }}^{\operatorname{Min}}
$$

Adding vocabulary:

- What happens if we add the implication ' $\$ ' with semantics

$$
v \Vdash \varphi \backslash \psi \quad \text { iff } \quad \forall u, w([u \Vdash \varphi, w=\sup \{u, v\} / w \in \min \{u, v\}] \Rightarrow w \Vdash \psi)
$$

- Answer: Again nothing:

$$
M I L_{\mid- \text {Pre }}=M I L_{\mid- \text {Pos }}=M I L_{l-\text { Pre }}^{\operatorname{Min}}=M I L_{l-\text { Pos }}^{\operatorname{Min}}
$$

Telling apart the $\langle\min \rangle$ and $\langle s u p\rangle$ interpretations

From partial orders to preorders:

- Our logics are defined over posets:

$$
\text { MIL } L_{\text {Pos }}:=\text { MIL, } \quad \text { MIL Min } \text { Pin }_{\text {Min }}:=\text { MIL }{ }^{\text {Min }}
$$

-What happens if we generalize to preorders $M I L_{\text {pre }}, M I L_{\text {Pre }}^{M i n}$?

- Answer: Nothing. We get the exact same logics:

$$
M I L_{\text {Pre }}=M I L_{\text {Pos }}=M I L_{\text {Pre }}^{M i n}=M I L_{\text {Pos }}^{\operatorname{Min}}
$$

Adding vocabulary:

- What happens if we add the implication ' $\$ ' with semantics

$$
v \Vdash \varphi \backslash \psi \quad \text { iff } \quad \forall u, w([u \Vdash \varphi, w=\sup \{u, v\} / w \in \min \{u, v\}] \Rightarrow w \Vdash \psi)
$$

- Answer: Again nothing:

$$
M I L_{\mid- \text {Pre }}=M I L_{\mid- \text {Pos }}=M I L_{l-\text { Pre }}^{\operatorname{Min}}=M I L_{l-\text { Pos }}^{\min }
$$

Going finite:
-What if we only consider finite posets?

Telling apart the $\langle\min \rangle$ and $\langle s u p\rangle$ interpretations

From partial orders to preorders:

- Our logics are defined over posets:

$$
\text { MIL } L_{\text {Pos }}:=\text { MIL, } \quad \text { MIL Min } \text { Pin }_{\text {Min }}:=\text { MIL }{ }^{\text {Min }}
$$

- What happens if we generalize to preorders $M I L_{\text {pre }}, M / L_{\text {Pre }}^{M i n}$?
- Answer: Nothing. We get the exact same logics:

$$
M I L_{\text {Pre }}=M I L_{\text {Pos }}=M I L_{\text {Pre }}^{M i n}=M I L_{\text {Pos }}^{\operatorname{Min}}
$$

Adding vocabulary:

- What happens if we add the implication ' $\$ ' with semantics

$$
v \Vdash \varphi \backslash \psi \quad \text { iff } \quad \forall u, w([u \Vdash \varphi, w=\sup \{u, v\} / w \in \min \{u, v\}] \Rightarrow w \Vdash \psi)
$$

- Answer: Again nothing:

$$
M I L_{\mid- \text {Pre }}=M I L_{\mid- \text {Pos }}=M I L_{l-\text { Pre }}^{\operatorname{Min}}=M I L_{l-\text { Pos }}^{\min }
$$

Going finite:
-What if we only consider finite posets?

- Answer: They come apart! B/c MIL $\not \nexists(P p \wedge P q) \rightarrow P\langle$ sup $\rangle p q \in$ MIL ${ }^{\text {Min }}$

Conclusion

Summary and main themes:

- Proved that $\langle\sup \rangle$ and $\langle\min \rangle$ interpretations result in the same logic MIL $=$ MIL ${ }^{\text {Min }}$.

Showed that MIL ${ }^{\text {Min }}$ is sound w.r.t. to axiomatization of MIL.
Collapsed the minimum-relation into the supremum-relation s.t.
by transforming instances of (i) into instances of (ii).
Ohtained axiomatization and decidahility for free
Considered other settings uncapable of distinguishing the
interpretations: preorders and augmenting with ' V '; but noted that the induced logics do come apart on finite structures.

Conclusion

Summary and main themes:

- Proved that 〈sup〉 and $\langle\min \rangle$ interpretations result in the same logic MIL $=$ MIL ${ }^{\text {Min }}$.
- Showed that MIL ${ }^{\text {Min }}$ is sound w.r.t. to axiomatization of MIL.
- Collapsed the minimum-relation into the supremum-relation s.t.

$$
w^{\prime} \in \min \left\{u^{\prime}, v^{\prime}\right\} \Leftrightarrow w^{\prime}=\sup \left\{u^{\prime}, v^{\prime}\right\}
$$

by transforming instances of (i) into instances of (ii).

> Obtained axiomatization and decidability for free. Considered other settings uncapable of distinguishing the interpretations: preorders and augmenting with ' 1 '; but noted that the induced logics do come apart on finite structures.

Conclusion

Summary and main themes:

- Proved that $\langle\sup \rangle$ and $\langle\min \rangle$ interpretations result in the same $\operatorname{logic} M I L=M I L^{\text {Min }}$.
- Showed that MIL ${ }^{\text {Min }}$ is sound w.r.t. to axiomatization of MIL.
- Collapsed the minimum-relation into the supremum-relation s.t.

$$
w^{\prime} \in \min \left\{u^{\prime}, v^{\prime}\right\} \Leftrightarrow w^{\prime}=\sup \left\{u^{\prime}, v^{\prime}\right\}
$$

by transforming instances of (i) into instances of (ii).

- Obtained axiomatization and decidability for free.

Considered other settings uncapable of distinguishing the interpretations: preorders and augmenting with ' \backslash '; but noted that the induced logics do come apart on finite structures.

Conclusion

Summary and main themes:

- Proved that 〈sup〉 and $\langle\min \rangle$ interpretations result in the same $\operatorname{logic} M I L=M I L^{\text {Min }}$.
- Showed that MIL ${ }^{\text {Min }}$ is sound w.r.t. to axiomatization of MIL.
- Collapsed the minimum-relation into the supremum-relation s.t.

$$
w^{\prime} \in \min \left\{u^{\prime}, v^{\prime}\right\} \Leftrightarrow w^{\prime}=\sup \left\{u^{\prime}, v^{\prime}\right\}
$$

by transforming instances of (i) into instances of (ii).

- Obtained axiomatization and decidability for free.
- Considered other settings uncapable of distinguishing the interpretations: preorders and augmenting with ' $\$ '; that the induced logics do come apart on finite structures.

Conclusion

Summary and main themes:

- Proved that $\langle\sup \rangle$ and $\langle\min \rangle$ interpretations result in the same $\operatorname{logic} M I L=M / L^{\text {Min }}$.
- Showed that MIL ${ }^{\text {Min }}$ is sound w.r.t. to axiomatization of MIL.
- Collapsed the minimum-relation into the supremum-relation s.t.

$$
w^{\prime} \in \min \left\{u^{\prime}, v^{\prime}\right\} \Leftrightarrow w^{\prime}=\sup \left\{u^{\prime}, v^{\prime}\right\}
$$

by transforming instances of (i) into instances of (ii).

- Obtained axiomatization and decidability for free.
- Considered other settings uncapable of distinguishing the interpretations: preorders and augmenting with ' \backslash '; but noted that the induced logics do come apart on finite structures.

Thank you!

References I

Knudstorp, S. B. (Forthcoming). "Modal Information Logics: Axiomatizations and Decidability". In: Journal of Philosophical Logic (cit. on pp. 8-16, 19-28).

回 Van Benthem, J. (1996). "Modal Logic as a Theory of Information".
In: Logic and Reality. Essays on the Legacy of Arthur Prior. Ed. by J. Copeland. Clarendon Press, Oxford, pp. 135-168 (cit. on pp. 8-16).

The principal lemma

Principal lemma

Let (W, \leq) be a poset frame and $\{w, u, v\} \subseteq W$ s.t. $w \in \min \{u, v\}$ but $w \neq \sup \{u, v\}$. Then (W, \leq) is the p-morphic image (w.r.t. the supremum relation) of a poset frame $\left(W^{\prime}, \leq^{\prime}\right)$ s.t.

1. $W \subseteq W^{\prime},\left|W^{\prime}\right| \leq \max \left\{\aleph_{0},|W|\right\}$;
2. $\leq^{\prime} \cap(W \times W)=\leq$;
3. if $x=\sup \{y, z\}$, then $x=\sup ^{\prime}\{y, z\}$;
4. $w \notin \min ^{\prime}\{u, v\}$.

Proof.

Let $W^{\prime}:=W \sqcup \downarrow w=\{(x, 0),(y, 1) \mid x \in W, y \in \downarrow w\}$, and

$$
f: W^{\prime} \rightarrow W,(x, i) \mapsto x
$$

For all $(x, i),(y, j) \in W^{\prime}$, we let $(y, j) \leq^{\prime}(x, i)$ iff

- $i=0$ and $y \leq x$, or
- $j=i=1$ and $y \leq x$, or
- $j=0, i=1, y \in A$ and $x=w$.

To show: (1) $\left(W^{\prime}, \leq^{\prime}\right)$ is a poset frame; (2) 1.-4. are satisfied; and (3) f is an onto p-morphism.

Completeness of MIL: the basic idea

Example

